If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(2x^2-9x-10)=0
We multiply parentheses
14x^2-63x-70=0
a = 14; b = -63; c = -70;
Δ = b2-4ac
Δ = -632-4·14·(-70)
Δ = 7889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7889}=\sqrt{49*161}=\sqrt{49}*\sqrt{161}=7\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-7\sqrt{161}}{2*14}=\frac{63-7\sqrt{161}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+7\sqrt{161}}{2*14}=\frac{63+7\sqrt{161}}{28} $
| 4x+9-x=25 | | 4x*7*2=392 | | 145+n=753 | | x/5(7=8 | | 5+|3x-4|=12 | | x/57=8 | | h^2+23h+16=0 | | x/5(7=)8 | | x+4-1=10-2x | | 3(4x+2)-7=11 | | ‘x’+4–1=10–2x | | x+4–1=10–2x | | 1/2=c/100 | | 12x-4=54 | | 14x^2-63x-70=0 | | 2x-1/5=5x-11/4 | | 4y-3+y+43=6y+40-4y | | -6=a+a=4 | | 20x^2+23x+3=0 | | T(n)=3n+2n+42 | | 2(6x)=3x+6 | | 2/3x+4=10.5 | | 5.7-1.5b=1.8 | | 14-((x+5)=3(x+9)-10 | | 2(x-2.3)=5.8 | | 17-(2x+3)=3(x-5)+x | | 1-4(x+5)=9 | | 6460=4181+h | | 4x⁴-73x²+144=0 | | 8x+9=18-2x | | 2/5(x-3/4)=3/10(7-2x) | | 3+7y=1 |